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An one dimensional model for an open system with two kinds of particles which
are driven in opposite directions by an external field is suggested. An exact
solution for a steady state is given for the low density regime and it is shown
that the model possesses what might be considered a phase transition from a
gaseous to a liquid state. The relation to models with a fixed number of particles
on a ring is discussed.
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1. INTRODUCTION

The idea is to consider clusters with a varying number of particles. We have
a one dimensional system with two kinds of particles which enter the
cluster from opposite directions and then leave the cluster at the other end.
If the particles arrive too fast to allow them to pass through the cluster as
fast they enter, then the size of the cluster will grow steadily. Otherwise,
one has an equilibrium size distribution. One of the main results is the
determination of the condition on the entering rates which separates the
two possibilities. The nature of the shift resembles in many respects the gas-
liquid phase transition. The article depends heavily on the article by
Derrida et al. (3)

2. THE MODEL

The dynamics in the interior of the cluster is the same as in Derrida
et al. (3) However, in order to emphasize the cluster we shall talk about two
kinds of particles, A and B, rather than particles and holes. We shall
assume that the A-particles move only from left towards right, while the



B-particles move only from right towards left. When an A-particle has a
B-particle as its neighbour to the right, then two particles can interchange
position. We shall normalize the unit of time so that the average frequency is 1
per pair and unit of time, i.e., in a small time interval of length dt the probabil-
ity for an interchange is dt if the A-particle is to the left of the B-particle. If the
B-particle is to left of the A-particle the probability for an interchange is zero.

The difference comes at the ends where the particles arrive and leave
independently. In a time interval of length dt an A-particle is added to the
left end with probability a dt independently of the size and configuration of
the existing cluster. Similarly, a B-particle is added with probability b dt at
the right end. If there is an A-particle at the right end of the cluster it
leaves the cluster with probability cA dt in a time interval of length dt, and
if there is a B-particle at the left end of the cluster it leaves the cluster with
probability cB dt. This approach to the problem seems to be principally
different from any earlier approach and that implies that the model does
not relate directly to any previous work. A discussion of how the present
work can be related to the existing literature will therefore be postponed to
the end of the article (Sections 6 and 7). A general review of exact results
for related models can be found in Schütz. (15)

We shall need some notation in order to define the mathematics of the
model. We shall use n for the size of the cluster (n=0, 1, 2,...). The par-
ticles in the cluster are numbered from left to right, 1, 2,..., n. The type of
the ith particle is described by an indicator variable, yi, which takes on the
values 0 and 1—the value 0 means that the ith particle is a B-particle, while
the value 1 means that it is an A-particle. The probability of finding the
cluster with n particles given by y1, y2,..., yn to time t is given by

Pn(y1, y2,..., yn; t).

The time evolution of the total set of probability functions is given by
(compare Eq. (22) in Derrida et al. (3))

d
dt
Pn(y1, y2,..., yn; t)=− C

n−1

i=1
yi(1−yi+1) Pn(y1,..., yn; t)

+C
n−1

i=1
(1−yi) yi+1Pn(y1,..., yi−1, yi+1, yi, yi+2,..., yn; t)

−(a+b) Pn(y1,..., yn)+ay1Pn−1(y2,..., yn)

+b(1−yn) Pn−1(y1,..., yn−1)− cB(1−y1) Pn(y1,..., yn)

− cAynPn(y1,..., yn)+cBPn+1(0, y1,..., yn)

+cAPn+1(y1,..., yn, 1). (1)
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One might worry about the consequences of having the master equa-
tion working on an infinite set of states. A good source of information is
the book by Feller. (6) The essential conclusion is that the only major dif-
ference from the finite case is that the existence of a stationary solution is
no longer guaranteed. When we in the following try an ansatz for a sta-
tionary solution and the ansatz is not working in certain situations then
there might be two reasons: Either the ansatz is wrong or the problem does
not have a stationary solution.

3. THE STATIONARY SOLUTION

We shall start by looking for a stationary solution to (1), i.e., a
set of functions Pn(y1,...,yn) (n=0, 1, 2,...) which when substituted for
Pn(y1,..., yn; t) in the right hand side of Eq. (1) give 0 for all values of n and
all possible values of y1,...,yn. We shall make the same type of ansatz as
Derrida et al. (3) One can hope that this will work because the size of the
system does not occur in the ansatz (except through the number of matrices
in the product).

Theorem 1. An unnormalized, stationary solution to Eq. (1) is
given by

Pn(y1,..., yn)=Ow| D
n

i=1
(yiaD+(1−yi) bE) |vP, (2)

where D and E are matrices which satisfy the following algebraic relation

DE=D+E, (3)

while Ow| and |vP are vectors which multiply the matrices from left and
right respectively. Ow| is a left eigenvector for E:

Ow| E=(1/cB)Ow|, (4)

and |vP is a right eigenvector for D:

D |vP=(1/cA) |vP. (5)

The algebra (Eqs. (3–5)) is the same as in Derrida et al. (3) and the proof
which is given in Appendix A can therefore be modelled after their proof.
The problem of finding matrices which satisfies Eq. (3) is easily solved. We
shall use the 3rd set suggested by Derrida et al. (3) and take

Exact Solution of 1D Asymmetric Exclusion Model with Variable Cluster Size 857



D=˛
1/cA `g 0 0 ...

0 1 1 0

0 0 1 1

0 0 0 1 z

x z

ˇ E=˛
1/cB 0 0 0 ...

`g 1 0 0

0 1 1 0

0 0 1 1

x z z

ˇ . (6)

The (1,1)-elements are chosen to give the correct eigenvalues (Eqs. (4) and
(5)). Also, the vectors Ow| and |vP are the same as in the third choice by
Derrida et al. (3)

Ow|=(1, 0, 0,...) |vP=R
1
0
0
x

S . (7)

The undetermined element, g, is given by

g=(cA+cB−1)/(cAcB). (8)

The motivation for this choice for D and E is to ensure that the computa-
tion of Pn(y1,..., yn) only involves finite sums, which will ease the mathe-
matics of the following computations.

Equations (2) and (6)–(8) determine a set of unnormalized probability
functions (actually, they are normalized to make P0=1). These functions
are well defined for all values of a, b, cA, and cB. In order to make sense as
probability functions they have to be normalized. To do that we have to
calculate the normalization constant, N,

N=C
.

n=0
C

y1, y2,..., yn

Pn(y1, y2,..., yn). (9)

It is only if the sum is finite that we have found a proper stationary solu-
tion. If we use Eq. (2) and define

C=aD+bE, (10)

then we can write Eq. (9) as

N=C
.

n=0
Ow| Cn |vP. (11)
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Since C is bounded then we can always for sufficiently small x define

N(x)=C
.

n=0
xnOw| Cn |vP=Ow| (I−xC)−1 |vP. (12)

The operator (I−xC)−1 is closely related to the resolvent of C
(Kato (8)). If the spectral radius of C is less than 1 then the sum in Eq. (12)
converges for x=1 and N=N(1) is finite and the probability functions
can be normalized. If the spectral radius of C is larger than 1 then the sum
in Eq. (12) diverges for x=1 and we do not have a stationary solution.
N(x) can be computed explicitly; in Appendix B we show that

N(x)−1=1−1 a
cA
+
b

cB
2 x+1

2
g 1−1+(a+b) x

+`1−2(a+b) x+(a−b)2 x2 2 (13)

provided the square root is well defined and N(x)−1 is not zero. The zeros
of N(x)−1 are most easily obtained by noticing that N(x)−1 factorizes:

N(x)−1=[1−(ax−k(x)/2)/cA][1−(bx−k(x)/2)/cB], (14)

where

k(x)=−1+(a+b) x+`1−2(a+b) x+(a−b)2 x2. (15)

The square root will be well defined unless x is real and

1−2(a+b) x+(a−b)2 x2 < 0. (16)

The cut defined in Eq. (16) is related to the continuous part of the spec-
trum of C, which comes from the infinite part of C (from the second row
and downwards). The zeros of N(x)−1 correspond to isolated eigenvalues
of C. Depending on the values of the parameters, N(x)−1 might have none,
one or two zeros. The sum in (11) will converge if the cut (Eq. (16)) and the
zeros of N(x)−1 lie outside the closed unit disk in the complex x-plane.

Theorem 2. If the following conditions are met then the solution
given in Theorem 1 will constitute a proper, normalizable stationary solu-
tion. The stationary solution is unique and is reached independent of the
initial state.

We always have Condition 1:

`a+`b [ 1. (17)
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If cA \ 1 and cB \ 1 then there are no additional conditions. If cA < 1 then
(Condition 2A) for c2A [ a [ cA one should have

b < (1− cA)(1−a/cA). (18)

If cB < 1 then (Condition 2B) for c2B [ b [ cB one should have

a < (1− cB)(1−b/cB). (19)

The uniqueness and the fact that the stationary solution is always
reached in the infinite time limit follows from the fact that the Markov
process defined by Eq. (1) is irreducible (any state can be reached from any
other state), Feller. (6) The proof of the existence is given in Appendix C.
Condition 1 relates to the cut (Eq. (16)). Physically, the condition implies
that the particles must not arrive so frequently that they are not able to
pass each other sufficiently fast. Condition 2 comes from the zeros of
N(x)−1. Physically, it says that if cA is too small then the A-particles are
not able to leave the cluster sufficiently fast and similarly with B-particles if
cB is too small. It is worth noticing that conditions on cA and on cB are
independent of each other because of the factorization (Eq. (14)). Also one
should notice that for Condition 1 the boundary is included in the allowed
region, while it is excluded in Condition 2. If cA+cB [ 1 then the allowed
region is determined by Condition 2 alone, otherwise Condition 1 will also
play a role.

If a and b are small enough, i.e., if neither Condition 1 nor Condi-
tion 2 are violated, then the solution given by Theorem 1 is valid and the
stable state can be compared to a gas state. The normalisation factor, Ñ, is
equal to N(1)−1:

Ñ=1−1 a
cA
+
b

cB
2+1
2
g 1−1+a+b+`1−2a−2b+(a−b)2 2 . (20)

The size distribution of the cluster can be obtained by expanding N(x) in
powers of x. For example the chance of finding an empty cluster is

p0=Ñ, (21)

and the chance of finding a cluster with just one particle is

p1=Ñ 5
a

cA
+
b

cB
6 . (22)
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The average cluster size, OnP, is found by differentiating N(x) at x=1 and
multiplying with Ñ,

OnP=Ñ−1 1 a
cA
+
b

cB
+
1
2
g 1−a−b+ a+b−(a−b)2

`1−2a−2b+(a−b)2
22 . (23)

The average number of A-particles in the cluster, OnAP, can be found by
observing that a only enters C as a multiplicative factor to D. This means
that OnAP=a dN(1)/da or

OnAP=Ñ−1 1
a

cA
+
1
2
g 1−a+ a−a(a−b)

`1−2a−2b+(a−b)2
22 . (24)

Similarly one finds for the average number of B-particles in the cluster,
OnBP

OnBP=Ñ−1 1
b

cB
+
1
2
g 1−b+ b+b(a−b)

`1−2a−2b+(a−b)2
22 . (25)

If the boundary

`a+`b=1, (26)

or some part of it, is part of the allowed region, then the normalization
factor, Ñ, is larger than zero on the allowed part of Eq. (26) and the solu-
tion given by Eq. (13) remains valid. The probability of finding an empty
cluster is still larger than zero. However, since the square root becomes
zero, then the average cluster size and the average number of A-particles
and the average number of B-particles all become infinite. The relative
density, OnAP/OnBP, can still be defined,

OnaP/OnBP=`a/b. (27)

4. THE INFINITE CLUSTER

In this section we shall study the case where we are on the boundary of
the ‘‘gas’’-state, i.e., where Eq. (26) is satisfied and in order to not mess up
things unnecessarily we shall assume that cA \ 1 and cB \ 1. In particular
we shall look at the properties of the infinite cluster in the equilibrium state
given by Theorem 1. This cluster can be considered as a dense state which
is in equilibrium with a dilute state that supplies the incoming particles and
absorbs the outgoing particles. We shall study the infinite cluster by
looking at the cluster of sizeM in the limitMQ.. To be precise, from the
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probability distribution given by Eq. (2) we extract the conditional proba-
bilities given that n=M and compute the leading terms in the asymptotic
expansions of the desired expectation values, valid in the limit MQ.. All
the computations are given in Appendix D. If one takes cA=cB=1, the
expression for N(x)−1 and all the computations of Appendix D are simpli-
fied considerably as can be seen in Derrida et al. (4)

The first step will be to calculate the normalization constant

NM=Ow| CM |vP. (28)

We find in the limit of largeM the following asymptotic value

NM 4
g · (ab)1/4

2p1/2Ñ2
M−3/2, (29)

and

NM−1/NM 4 1+(3/2) M−1. (30)

The next step will be to calculate

NA(m, n)=aOw| CmDCn |vP, NB(m, n)=bOw| CmECn |vP. (31)

In the limit of large m and n we have the following asymptotic values

NA(m, n) 4Nm+n `a, NB(m, n) 4Nm+n `b. (32)

From this we conclude that in the bulk part of the infinite cluster the
density of the A-particles is `a while the density of the B-particles is `b.
By the bulk we understand any point specified such that the distance to
both ends goes to infinity.

In the bulk we also have absence of correlations, i.e., that the proba-
bility of having a specified configuration on a finite sequence of points is
equal to ana/2 ·bnb/2 where na and nb are the numbers of A- and B-particles
in the specified configuration. This statement is also proved in Appen-
dix D. In many respects this is the most important result of this section.
Absence of correlation automatically gives that ratio of the rates is equal to
the square of the ratio of the densities (Eq. (27)). It also implies that mean
field calculations are correct.

It might seem like we are getting the wrong transport properties. The
probability of finding an AB-pair is `ab=`a−a, which implies that
A-particles are transported over a fixed point on the line at that rate. But
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A-particles are passed through the cluster at the rate a. Only if a=1/4 do
the two values agree. The discrepancy comes from the fact if a ] 1/4 then
the cluster moves as whole with the rate b−a=1−2`a towards the right.
Since the density of A-particles is `a this subtracts `a−2a from the
stream of A-particles through the cluster towards the right and gives the
correct value.

One has the following exact value for the probability of having a
B-particle at the left end of the cluster of size M, (b/cB) NM−1/NM. This
implies that the B-particles leave the cluster at the rate of b ·NM−1/NM 4

b · (1+3/(2M)) per unit of time. Similarly the A-particles leave at the
other end with the rate a ·NM−1/NM 4 a · (1+3/(2M)). The occurrence of
a B-particle at the left end is uncorrelated with the occurrence of an
A-particle at the right end.

5. THE UNBOUNDED GROWTH

If Eq. (32) is not satisfied, then one should expect the cluster to grow
steadily and one can not expect to have a stable distribution of clusters in
the infinite time limit. One would expect that the number of B-particles
which leave the cluster per unit of time is given by the maximum allowed
for the given value of A-particles which enters the cluster, i.e., the number
of B-particles which leave the cluster is (1−a1/2)2 per unit of time.
Similarly, the number of A-particles which leave the cluster is (1−b1/2)2

per unit of time. The size of the cluster should thus increase with
a+b−(1−a1/2)2−(1−b1/2)2 per unit of time. And the relative density
becomes

OnaP
OnBP

=
a−(1−`b)2

b−(1−`a)2
=
`a+1−`b

`b+1−`a
. (33)

All this are confirmed by some preliminary Monte Carlo calculations. A
rigorous mathematical proof is outside the scope of the present article.

6. PARTICLES ON A RING

Most of the literature which might be related to present work concerns
particles moving on a ring. One has a ring with a fixed number of sites, L,
each site is either empty or occupied by one particle. One has two kinds of
particles, A and B, which gives three possible states for each site, A, B, or
E. The state of two neighbouring sites can be interchanged with rates which
differ from model to model.
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The choice by Evans et al. (5) stands out. They choose the rates for
AB Q BA, BE Q EB, and EA Q AE all to be 1 and the rates for BA Q AB,
EB Q BE, and AE Q EA to be q and prove that for q ] 1 and equal
numbers of A, B, and E one gets a segregation into three ‘‘phases,’’ each
dominated by one the species. A similar result has been obtained by Arndt
et al. (1) and Arndt and Rittenberg (2) who made the choice AE Q EA and
EB Q BE with rates l, EA Q AE and BE Q EB with rates 0, BA Q AB
with rate 1 and AB Q BA with rate q and by both Monte Carlo and mean
field calculations found the same type of phase segregation for q < 1. The
restrictions on the rates in this class of models are not consistent with the
assumption that the particles are driven by an external field and it appears
that the phase segregation seen here can not be related to observations on
models which are consistent with the assumption of an external field as the
driving force.

Arndt et al. (1) and Arndt and Rittenberg (2) also considered their model
with q > 1 and found that if l and the density of particles were large
enough then the system segregated into two phases, one dense phase with
no vacancies and one homogeneous phase with all the vacancies and some
of the particles. Again they used both Monte Carlo and mean field cal-
culations. Their results have been disputed by Rajewsky et al. (13) (see also
Sasamoto and Zagier (14)) who performed a rigorous study based on the
grand canonical ensemble. If one believes in the results by Arndt et al. then
the dense phase they find can be compared to the infinite cluster in the
present work and their phase transition between a one phase system at low
density and a two phase system at high density is essentially the same tran-
sition found here when Eq. (26) is satisfied. A more detailed comparison is
excluded since in the present work the backwards movement BA Q AB is
excluded.

Derrida et al. (4) gave a complete solution based on matrix algebra for
the case where AE Q EA, EB Q BE, and AB Q BA have rates one while
the remaining rates are zero. They were interested in shock effects and
focused on the situation with one or a few vacancies and interpreted the
model in a different language, calling the vacancies for tracer particles and
considering the B-particles as the vacancies. Their results on shock effects
have no bearing on the present study, but as we shall see in the next section
their mathematics has an interesting similarity to the present work.
Mallick (10) studied the same problem with different rates for the three
allowed interchanges.

Korniss et al. (9) and Mettetal et al. (11) made Monte Carlo calculations
for a model with two parallel rings, where neighbouring sites on the two
rings are allowed to interchange states. Along the rings the allowed
interchanges are AE Q EA and EB Q BE with rates c and AB Q BA with
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rate 1. If one only had one ring then it follows from Rajewsky et al. (13) that
one always will have one homogeneous phase. However, for the system
with two rings and the right values of c and the particle density Korniss
et al. (9) found a two phase system similar to the findings of Arndt et al. (1)

Again the dense phase they find can be compared to the infinite cluster in
the present work. They only did computations for one density and one
value of c. But in that case they were able to reproduce the density in low
density phase by a theoretical computation which assumed absence of cor-
relation in the dense phase.

One might wonder how the ‘‘infinite cluster’’ which certainly has large
size fluctuations according to the model can be used to describe the dense
phase on a ring where size fluctuations are very small. Initially, one should
notice that the fluctuations might well be larger measured in the lattice
units, but if one scale with the size of the system they ought to be small.
The mechanism behind this is the same as for the ordinary gas-liquid equi-
librium. The number of particles which leave the infinite cluster per unit of
time are independent of its size while the number which enter depends on
the concentration of particles in the thin phase. If the infinite cluster is too
small there are too many particles in the thin phase and more particles
enter the infinite cluster than leave and vice versa.

7. DISCUSSION

It might appear more natural to compare with the computations on
open systems (which are actually clusters of a fixed size, but with variable
densities) like the computations by Derrida et al. (3) In fact, fixing the size,
changes the restrictions on the dynamics so drastically that the comparison
is difficult. Derrida et al. (3) find three different states, the maximum current
state, an A-rich state and a B-rich state. They mostly resemble the infinite
cluster in the present work with a=b=1/4 being the maximum current
state, while the part of Eq. (26) where a > b corresponds to the A-rich state
and the part with a < b corresponds to the B-rich state. Clearly the geom-
etry of the phase space is very different in the two cases.

As mentioned earlier there exists an interesting connection to the
grand canonical ensemble used in some studies of dynamical systems. If
one takes cA=cB=1 then the generating function for the probability dis-
tribution, N(x), is identical to the grand canonical ensemble in Derrida
et al. (4) with a and b playing the role of the fugacities. In an ideal gas the
fugacity is equal to the pressure and the mechanical definition of the pres-
sure says that it is proportional to the number of particle that hit the
surface per unit time. So it looks like more than an amusing coincidence.

To sum it up: A dynamical one dimensional model for a system with
variable cluster size has been introduced. It has been proven that it has a
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behaviour which in some aspects looks like a liquid-gas transition. A
complete solution has been given for the gaseous state up to and including
the point of phase transition. It has been proven that the condensed state
(the infinite cluster) at the transition point is homogeneous and has no
correlation, not even short range correlation. It has been argued that the
infinite cluster is a model for the condensed state in certain models on a
ring. But perhaps one should concentrate on the present model with vari-
able cluster size, which after all looks much more like something which
could be realized experimentally.

Nothing has been proven about the behaviour beyond the transition
point. That also goes for the transitions at low values of cA and/or cB.

APPENDIX A: PROOF OF THEOREM 1

Equation (2) can alternatively be written as

Pn(y1,..., yn)=Ow| D
n

i=1
(yiD+(1−yi) E) |vP anAbnB, (A1)

where

nA=C
n

i=1
yi and nB=C

n

i=1
(1−yi). (A2)

nA and nB are of course not changed by the internal movements in the
cluster. These movements are represented by the two sums in Eq. (1) and it
is shown by Derrida et al. (3) that the assumption in Eq. (3) reduces the
sums to two single terms, one for each end. This is not changed by the
factors anA and bnB and we end up we the following condition for station-
arity

0=(ay1−x(y1)) Ow| D
n

i=2
(yiaD+(1−yi) bE) |vP

+(b(1−yn)+x(yn)) Ow| D
n−1

i=1
(yiaD+(1−yi) bE) |vP

−(a+b+cB(1−y1)+cAyn) Ow| D
n

i=1
(yiaD+(1−yi) bE) |vP

+cBbOw| E D
n

i=1
(yiaD+(1−yi) bE) |vP

+cAaOw| D
n

i=1
(yiaD+(1−yi) bE) D |vP (A3)
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where

x(y)=ya+(y−1) b. (A4)

As a first step towards finding a solution to Eq. (A4) we shall split it
into two parts. One concerned with the left end

0=(ay1−x(y1)) Ow| D
n

i=2
(yiaD+(1−yi) bE) |vP

−(d+cB(1−y1)) Ow| D
n

i=1
(yiaD+(1−yi) bE) |vP

+cBbOw| E D
n

i=1
(yiaD+(1−yi) bE) |vP (A5)

and one concerned with the right end

0=(b(1− yn)+x(yn)) Ow| D
n−1

i=1
(yiaD+(1− yi) bE) |vP

−(a+b−d+cAyn) Ow| D
n

i=1
(yiaD+(1−yi) bE) |vP

+cAaOw| D
n

i=1
(yiaD+(1− yi) bE) D |vP (A6)

where d is a yet undetermined parameter. For fixed values of y2,...,yn
Eq. (A5) splits into two conditions, one for y1 = 0

0=Ow| (b−(d+cB) bE+cBb2E2), (A7)

and one for y1 = 1

0=Ow| (−daD+cBabED). (A8)

Similarly, for fixed values of y1,...,yn−1 Eq. (A6) splits into two conditions,
one for yn=0

0=(−(a+b−d) bE+cAabED) |vP, (A9)

and one for yn=1

0=(a−(a+b−d+cA) aD+cAa2D2) |vP. (A10)

Using the eigenvalue equations (4) and (5) it is easily checked that with the
choice d=b all 4 equations are satisfied.
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APPENDIX B: PROOF OF EQ. (13)

We want to calculate the (1,1)-element of (I−xC)−1. We shall do this
by a method which was introduced many years ago for the calculation of
relaxation spectra (Heilmann (7)). We start by calculating the (1,1)-element
of (IM−xCM)−1, the matrix where we have only taking the firstM columns
and rows, and then afterwards taking the limitMQ.. The elements of an
inverse matrix are given by the cofactor divided by the determinant.
Determinants of tridiagonal matrices are easily calculated by recursion. We
shall use PM(x) for the cofactor of the (1,1)-element and QM(x) for the
determinant of IM−xCM. ForM> 2 both PM and QM will satisfy the same
recurrence relation (here written out for PM):

PM(x)=(1−(a+b) x) PM−1(x)−abx2PM−2(x). (B1)

The initial conditions are

P1(x)=1, P2(x)=1−(a+b) x, (B2)

and

Q1(x)=1−tx, Q2(x)=(1−(a+b) x) Q1(x)−abgx2, (B3)

where

t=
a

cA
+
b

cB
. (B4)

The computation of the cofactor is standard. If we write

PM(y)=(x`ab)1−M PM(x), (B5)

and

y=(1−(a+b) x)/(2x`ab), (B6)

then the recurrence relation (B1) transforms into the recurrence relation for
Tchebichef polynomials. The initial conditions (B2) allow the identification

PM(y)=UM−1(y), (B7)
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where UM(y) are the Tchebichef polynomials of the second kind. The
determinants are then found by noticing that if we define P0=0, which is
consistent with the Tchebichef polynomials, then

QM(x)=(1−tx) PM(x)−abgx2PM−1(x). (B8)

Since x is small and y therefor is large, then it is more practical to identify
the Tchebichef polynomials with the hyperbolic functions rather than the
circular functions. We have

PM(x)=(x`ab)M−1 sinh(Mz)/sinh(z), (B9)

where

cosh(z)=(1−(a+b) x)/(2x`ab), (B10)

If y is larger than 1, then we can solve (B10) for ez and choose the solution
where the real part of z is larger than zero. We write the solution as

e−z=
1−(a+b) x−`1−2(a+b) x+(a−b)2 x2

2x`ab
. (B11)

According to our plan we should calculate N(x) as

N(x)= lim
MQ.

PM(x)/QM(x). (B12)

It is easily checked that Eq. (13) obtains.

APPENDIX C: PROOF OF THEOREM 2

The condition (16) is resolved by finding the numerically smallest zero
of

1−2(a+b) x+(a−b)2 x2=0.

This is easily seen to be

x=
a+b−`4ab

(a−b)2
,

provided a ] b. If a=b then it is x=1/(4a). In any case one easily con-
firms that the requirement that this zero should not be smaller than one
leads to Condition 1.
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To prove Condition 2A we start by finding the possible solutions to

cA−ax+k(x)/2=0.

It easily seen that the only possible solution is

x=cA(1− cA)/[a(1− cA)+cAb],

and this will only be a solution if

a(1− cA)2 \ bc
2
A.

The requirement that the zero should be larger than one gives Condi-
tion 2A. Condition 2B is proven in the same way.

APPENDIX D: CALCULATIONS FOR SECTION 4

We start by getting the first term of the asymptotic expansion for NM.
The residue theorem gives

NM=
1
2pi

G dx N(x)/xM+1, (D1)

where the integral is around a small circle in the complex x-plane with
centre at x=0. The singularities of N(x) will be the cut (Eq. (16)) and the
possible zeros of N(x)−1. Equation (26) ensures that the cut starts at x=1
and continues out along the real x-axis. The conditions on cA and cB ensure
that possible zeros will occur for |x| > 1, so that the dominant contribution
for largeM comes from the start of the cut at x=1. The contribution from
the cut is

NM 4
1
p
F
b

1
exp(−M ln(x))

(x−1)1/2 g(x)1/2

f(x)2+(x−1) g(x)
1
x
dx, (D2)

where

f(x)=1−[(a/cA)+(b/cB)] x+
1
2 g[−1+(a+b) x], (D3)

and

g(x)=(g/2)2 [4`ab−(x−1)(a−b)2]. (D4)
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Using Laplace’s method (Olver (12)) one finds Eq. (29) (f(1)=Ñ). One can
if necessary find the following terms in the asymptotic expansion, but we
do not need them; the next term is of order M−5/2 and that is sufficient to
prove Eq. (30).

Lemma D1.

DnC=aDn+1+b C
n−1

j=0
Dn−j+bE. (D5)

Proof. The proof is by induction on n. For n=0 it is obviously true:
the induction follows easily from Eq. (3). L

Lemma D2. We can write

Cn=C
n

p=1
C
p

q=0
xp, q(n) EqDp−q, (D6)

where (q=0,..., n)

xn, q(n)=an−qbq, (D7)

and

xn−r, q(n)=C
r

j=0
an−q−jbq+j 51n−q−1

j
21q+r−1
r−j
2−1n−q−1

j−1
21q+r−1
r−j−1
26,

(D8)

r=1,..., n−1 and q=0,..., n−r. If q=n−r then the upper limit on the
summation should be n−q−1.

Proof. The proof is again by induction on n. For n=1 the statement
is clearly correct. For the induction we start by multiplying Eq. (D6) from
the right with C, using Lemma D1. After rearranging the sums one finds
the recursion relations for xp, q(n). The fulfilment will be a necessary and
sufficient condition for the induction to work.

xq, q(n+1)=b C
n

j=q−1
xj, q−1(n),

for q=2,..., n+1; for q=1 one gets the same expression except that
summation should start with j=1. For p > q the relation becomes

xp, q=axp−1, q(n)+b C
n

j=p
xj, q(n),
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except for p=1 where the first term should be left out. However the two
exceptions do not matter because Eq. (D8) gives x0, 0(n)=0. That the
recursion relations are consistent with Eqs. (D7) and (D8) is seen by sub-
stituting (D7) and (D8) on the right hand side, interchanging the summa-
tions and use

C
n

j=0

1m+j
j
2=1n+m+1

m+1
2 . L

Lemma D3. If we define vectors |aqP (q=0, 1, 2,...) with compo-
nents aq, r (r=0, 1, 2,...):

|aqP=Eq |vP, (D9)

then

aq, 0=(b/cB)q

aq, r=`g C
q−r

j=0

1q−1−j
r−1
2 (b/cB) j, for 1 [ r [ q

aq, r=0, for r > q.

(D10)

Proof. The first and the last line of Eq. (D10) are trivial conse-
quences of the definitions of E and |vP (Eqs. (6) and (7)). The middle line
follows by induction on q, taking r=1 first and then r > 1. L

We also define vectors |bnP (n=0, 1, 2,...) with components bn, r
(r=0, 1, 2,...):

|bnP=Cn |vP. (D11)

Lemma D4. We have

bn, 0=Nn, (D12)

and (t is defined in Eq. (B3))

bn, 1=(Nn+1−tNn)/(a`g). (D13)

Proof. Equation (D12) is a simple consequence of the definitions.
For Eq. (D13) we use

Ov| ECn |wP=Nn/cB, Ov| DCn |wP=bn, 0/cA+bn, 1 `g,

which together with C=aD+bE gives the desired result. L
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Lemma D5. More generally we have for 1 [ r [ n (the integral is in
the complex w-plane along a small circle around the origin)

bn, r=`g C
n−r

k=0

1 r−1+k
r−1
2 b r+k 1

2pi
G dw(1+w)n (b+a/w)n−r−k

(a−w2b) w−1[1+w−w/cA]−1 [a+bw(1−1/cB)]−1. (D14)

For r > n we have bn, r=0.

Proof. We start by using Eq. (D6), Lemma D3 and D j |wP=c−jA to
get

bn, r=`g C
n−r

k=0

1 r−1+k
r−1
2 C

n

p=r+k
C
p

q=r+k
xp, q(n) c

r+k−q
B cq−pA . (D15)

If one expands (1+w)q+r−1 (a+bw)n−q−1 in powers of w and compare with
Eqs. (D7) and (D8) then one can see that one has the expression for xp, q(n)
in terms of a contour integral

xp, q(n)=
bq

2pi
G dw(1+w)q+n−p−1 (a+bw)n−q−1 (a−bw2) wp−n−1. (D16)

Using this in (D15) the summations on p and q can be done explicitly. We
start with the summation on p. It can be extended to infinity since the
contour integral gives zero if p > n and the summation converges abso-
lutely if |w| is sufficiently small. Afterwards the same argument applies to
the summation on q and the lemma obtains. L

We define the vectors Ob̃n | (n=0, 1, 2,...) with components b̃n, r
(r=0, 1, 2,...):

Obn |=Ow| Cn. (D17)

Lemma D6. We have

b̃n, 0=Nn, (D18)

b̃n, 1=(Nn+1−tNn)/(b`g), (D19)

b̃n, r=`g C
n−r

k=0

1 r−1+k
r−1
2 a r+k 1

2pi
G dw(1+w)n (a+b/w)n−r−k

(b−w2a) w−1[1+w−w/cB]−1 [b+aw(1−1/cA)]−1. (D20)
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Proof. Since Ob̃n | obtains from |bnP by transposing followed by an
interchange of a and b and cA and cB then lemma follows trivially from the
preceding lemmas. L

It follows from the definitions that we have

Ob̃m | bnP=Nm+n, (D21)

C
[n, m]

r=1
b̃m, rbn, r=Nm+n−NmNn. (D22)

We shall also need to calculate

cm, n=a C
[m, n−1]

r=1
b̃m, rbn, r+1 (D23)

and

c̃m, n=b C
[m−1, n]

r=1
b̃m, r+1bn, r. (D24)

Lemma D7. We have

cm, n=
g

(2pi)2
G dy G dx y−m−1x−n−1N(y) N(x)

[abxy+k(x) k(y)/4−(a+b−1/x) yk(x)/2]/(y−x). (D25)

Proof. We start with Eqs. (D14) and (D20) with the summation
variable changed j=k+r

cm, n=g C
[m, n−1]

r=1
C
m

jŒ=r
C
n−1

j=r

1 jŒ−1
r−1
21 j
r
2 a jŒ+1b j+1 1

(2pi)2
G dv G dw

(1+v)m (a+b/v)m−jŒ (b−v2a)

v−1[1+v−v/cB]−1 [b+av(1−1/cA)]−1

(1+w)n (b+a/w)n−j−1 (a−w2b)

w−1[1+w−w/cA]−1 [a+bw(1−1/cB)]−1.
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The summation on r can be done explicitly after reordering of the summa-
tions

C
[j, jŒ]

r=1

1 jŒ−1
r−1
21 j
r
2=1 j+jŒ−1

j−1
2 .

The binomial can be represented with a contour integral in the complex
t-plane around t=0 with the restriction |t| < 1

1 j+jŒ−1
j−1
2= 1
2pi

G dt(1−t)−jŒ−1 t−j.

If the upper limit for the summation on jŒ is extended then the contour
integral on v will ensure that the additional terms are all zero, and if |v| is
sufficiently small then the sum on jŒ will converge absolutely. More preci-
sely we can take |t|=1

2 and |v|=min{b/(4a), 1}. We can consequently
extend the upper limit to .. Similarly, we extend the summation on j to .
if we also take |w|=min{a/(4b), 1}. Now the summations on j and jŒ can
be done explicitly

cm, n=
ga2b2

(2pi)3
G dt G dv G dw(1−t)−1 (1−t−av/(av+b))−1 (t−bw/(bw+a))−1

(1+v)m (a+b/v)m−1 (b−v2a) v−1[1+v−v/cB]−1 [b+av(1−1/cA)]−1

(1+w)n (b+a/w)n−2 (a−w2b) w−1[1+w−w/cA]−1 [a+bw(1−1/cB)]−1.

The integration on t can easily be done. With the above restrictions there is
just one pole, t=bw/(bw+a), inside |t|=1

2

cm, n=
gb

(2pi)2
G dv G dw(1−vw)−1 [(1+v)(a+b/v)]m (b−v2a)

[1+v−v/cB]−1 [b+av(1−1/cA)]−1 [(1+w)(b+a/w)]n

(a−w2b) w[1+w−w/cA]−1 [a+bw(1−1/cB)]−1.

The next step is to change the integration variables to x and y

x=w/[(1+w)(bw+a)],

y=v/[(1+v)(av+b)].

w=−k(x)/(2xb),

v=−k(y)/(2ya).
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If |v| and |w| are small enough there is no problems with the mapping being
one-to-one and the closed contours around the origin in the v- and
w-planes map onto closed contours around theorigin in the y- and x-planes
respectively. We have

(a2−bw2) dw=(w2/x2) dx,

[1+w(1−1/cA)][a+bw(1−1/cB)]=(w/x) N(x)−1,

and similarly for the connection between v and y. Finally, we have

bvw2

1−vw
=
1
y−x

[abxy+k(x) k(y)/4−(a+b−1/x) yk(x)/2]. (D26)

From which the proof is easily concluded. L

Lemma D8. We have

c̃m, n=
g

(2pi)2
G dy G dx y−m−1x−n−1N(y) N(x)

[abxy+k(x) k(y)/4−(a+b−1/y) xk(y)/2]/(x−y). (D27)

Proof. By analogy to Lemma D7. L

Lemma D9. If m [ n and mQ., nQ. then

cm, n−c̃m, n=O((m+n)−3/2 m−1/2). (D28)

Proof. Since the left side of Eq. (D26) does not have any singularities
for |vw| < 1, then the right side can not have any singularities for x=y and
that goes for the integrands of Eqs. (D25) and (D27) too. Subtracting the
integrals as they stand in Eqs. (D25) and (D27) and then adding the whole
once more with x and y interchanged we get

2(cm, n−c̃m, n)=
g

(2pi)2
G dx G dy[x−n−1y−m−1−x−m−1y−n−1](y−x) −1

[2abxy+k(x) k(y)/2−(a+b−1/x) yk(x)/2

−(a+b−1/y) xk(y)/2] N(x) N(y).

The first line of the integrand gives

[x−n−1y−m−1−x−m−1y−n−1](y−x)−1=C
n−m

j=0
x j−n−1y−j−m−1.
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The last two lines give

(2/g2)+N(x)[2(tx−1)/g2−(a+b−1/y) x/g]

+N(y)[2(ty−1)/g2−(a+b−1/x) y/g]

+[2abxy+2(1−tx)(1−ty)/g2+(a+b−1/x) y(1−tx)/g

+(a+b−1/y) x(1−ty))/g] N(x) N(y).

The first line of the above gives 0 when integrated, while the last two lines
to the lowest order in m and n give when we use Eqs. (D1) and (29)

cm, n−c̃m, n=A C
n−m

j=0
(n−j) −3/2 (m+j)−3/2,

for some constant A which does not depend on m and n. The sum can be
estimated by the integral

F
n−m

0
dj[(m+j)(n−j)]−3/2=4(n+m)−2 (n−m)(nm)−1/2,

from which the lemma obtains. L

Proof of Eq. (32). Expanding D, taking the element of the first row
separately and the diagonal and the superdiagonal of rest one gets

NA(m, n)=(a/cA) NmNn+Nm(Nn+1−tNn)+a(Nn+m−NmNm)+cm, n,

where we have used Lemma D4, Lemma D6, and Eqs. (D22) and (D23).
The definition implies

NA(m, n)+NB(m, n)=Nm+n+1.

Lemma D9 together with the expansion above imply

NA(m, n)−NB(m, n) 4 (a−b) Nm+n,

to the leading order in m and n. Solving the two equations for NA(m, n) and
NB(m, n) to the same order, using Eq. (26), gives Eq. (32). L

Proof of the Absence of Correlation. We specify a given sequence
of k particles by indicator variables, y1, y2,..., yk, just as in Section 2. We
introduce unnormalized probabilities by

N(m, n; y1, y2,..., yk)=Ow| Cm D
k

j=1
(yjaD+(1−yj) bE) Cn |vP.
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Equation (32) implies that to the leading order in m and n we have for
k=1

N(m, n; 1)=`aNm+n, N(m, n; 0)=`bNm+n.

For k=2 the algebra gives

N(m, n; 1, 0)=bN(m, n; 1)+aN(m, n; 0) 4 (b`a+a`b) Nm+n

=`abNm+n.

We shall call this argument the algebraic argument. The definitions imply

N(m, n; 1, 0)+N(m, n; 1, 1)=N(m, n+1; 1) 4`aNm+n

or

N(m, n; 1, 1) 4 aNm+n.

We shall call this argument the ‘‘definition’’ argument. The same argument
applied to y1 gives

N(m, n; 0, 0) 4 bNm+n, N(m, n; 0, 1) 4`abNm+n.

If we define for any k and any configuration

na=C
k

j=1
yj, nb=k−na,

then we have proved that for k=1 and 2 we have

N(m, n; y1, y2,..., yk) 4 ana/2bnb/2Nm+n. (D29)

We shall proceed with induction to prove that it holds for all k, using the
same two arguments again. We assume Eq. (D29) to be true for all config-
urations of length k. For a configuration of length k+1 which ends with
yk=1 and yk+1=0 the algebraic argument can be used to reduce the
problem to configurations of length k. We can then use the ‘‘definition’’
argument to handle configurations of length k+1 which end with yk=1
and yk+1=1. Similarly, for configurations of length k+1 which starts with
y1=1 and y2=0 the algebraic argument can be used to reduce the problem
to configurations of length k, and then the ‘‘definition’’ argument to handle
configurations of length k+1 which start with y1=0 and y2=0. So we are
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left with the problem of handling configurations of length k+1 which have
y2=1 and yk=0. If k=2 no such configurations exist. If k > 2 we can find
a j (2 [ j < k) such that yj=1 and yj+1=0 and then apply the algebraic
argument to that pair. This concludes the induction. L
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